您当前的位置:首页 > 新闻动态 > 媒体关注

【山西晚报】中国“墨子号”卫星实现千公里级量子纠缠分发

时间:2017-06-21 02:09:00 来源:山西晚报|
将量子纠缠分发的世界纪录提高了一个数量级
 
  据新华社电 从百公里到千公里,中国“墨子号”量子卫星将量子纠缠分发的世界纪录提高了一个数量级。15日美国《科学》杂志以封面文章形式发布了中国“墨子号”量子卫星的重大成就,并在一份简介中将这项中国科学家独立完成的工作称为“一项里程碑式的研究”。
 
  在《科学》杂志封面上,“墨子号”从星空向地面发出两道光,宛如两条长腿跨出一大步,也象征量子通信向实用迈近一大步。杂志刊发了中国科学技术大学教授、量子卫星项目首席科学家潘建伟等人的论文,题为《基于卫星的纠缠分发距离超过1200公里》。
  
  论文说,通过“墨子号”向地面发射光子,每对处于纠缠状态的光子中的一个发向青海德令哈站,另一个发向云南丽江站,两个地面站之间的距离达到1203公里。这是世界上首次实现千公里量级的量子纠缠。
  
  首先,我们要搞懂什么是量子纠缠。量子纠缠是一种奇特的量子力学现象,通俗地说,两个处于纠缠状态的量子就像有“心灵感应”,无论相隔多远都可瞬间互相影响,爱因斯坦称之为“鬼魅般的远距作用”。
  
  量子纠缠分发,就是将一对有“感应”的量子分置于两地。这尤其适用于保密通信,在此基础上的量子通信技术被誉为信息安全的“终极武器”。
  
  要让量子通信实用化,需要实现量子纠缠的远距离分发。但量子地面传输无论通过光纤或大气都有较大信号损耗,此前国内外地面实验传输距离一直停留在一百公里量级。解决这个问题的一个有效办法就是利用卫星向地面分发。
  
  作为世界首颗量子科学实验卫星,“墨子号”星地纠缠分发的传输衰减仅是同样距离地面衰减的万亿分之一。但这种方式对精度要求极高,好比从万米高空飞机上扔下一连串硬币,在地面用存钱罐接住。
  
  “墨子号”在相距1203公里的德令哈站和云南丽江站之间实现量子纠缠分发,首次将量子纠缠分发的世界纪录从百公里提高到千公里量级。“墨子号”科学应用系统总设计师彭承志说:“这是量子卫星上天以来迄今为止发布的最大成果。”
  
  潘建伟对记者说:“这项工作为未来开展大尺度量子网络和量子通信实验研究,以及开展外太空广义相对论、量子引力等物理学基本原理的实验检验奠定了可靠的技术基础。”
  
  《科学》杂志在一份简介中将这项中国科学家独立完成的工作称为“一项里程碑式的研究”。论文审稿人认为,这一成果是“兼具潜在实际应用和基础科研重要性的重大技术突破”、“毫无疑问将在学术界和广大社会公众中产生非常巨大的影响”。
  
○链接
  量子卫星“墨子号”
  
  量子卫星“墨子号”是中国自主研制的世界上首颗空间量子科学实验卫星,于2016年8月16日发射升空,是中科院空间科学先导专项首批科学实验卫星之一。
  
  量子卫星的主要目标之一是进行星地高速量子密钥分发实验,并在此基础上进行广域量子密钥网络实验,以期在空间量子通信实用化方面取得重大突破。同时,量子卫星在空间尺度进行量子纠缠分发和量子隐形传态实验,将使人类首次具有在空间尺度开展量子科学实验的能力,成为我国在基础物理学领域对世界的又一重要贡献。
据新华社
  
○解读
  证实“鬼魅般超距作用” 回答爱因斯坦“百年之问”
  
  “鬼魅般的超距作用”——近百年前,爱因斯坦对量子纠缠提出疑问,激励着几代科学家不断研究验证。科学探索的过程,也催生了“量子革命”,孕育出激光、半导体、核能等革命性技术,改变人类文明进程。
  
  在新时期,越来越多中国科学家投身其中。中国科学院联合研究团队,在中科院空间科学战略性先导科技专项的支持下,近日利用“墨子号”量子卫星在国际上率先成功实现了千公里级的星地双向量子纠缠分发,被国际同行称为“处于世界领先地位”。
  
  爱因斯坦也“百思不得解”
  
  当两个量子发生“纠缠”,一个变了,另一个也会“瞬变”,无论它们之间相隔多远。——如同“心灵感应”,这就是量子力学理论中神奇的“量子纠缠现象”。
  
  近百年前,作为量子力学的开创者之一,爱因斯坦也“百思不得解”。由于当时缺乏检验能力,他认为,或许是量子理论“还不完备”。
  
  一代一代的学者对这种“鬼魅般的超距作用”进行研究,但由于量子纠缠“太脆弱”,会随着光子在光纤内或地表大气中的传输距离而衰减,以往的实验只停留在百公里距离,量子纠缠仍然存在“漏洞”。
  
  6月16日,中国科学技术大学潘建伟教授及其同事彭承志等组成的研究团队宣布,日前利用“墨子号”量子卫星在国际上率先成功实现了千公里级的星地双向量子纠缠分发,并在此基础上实现了空间尺度下严格满足“爱因斯坦定域性条件”的量子力学非定域性检验。国际权威学术期刊《科学》以封面论文的形式发表了该成果。
  
  这也就是说,通过“墨子号”卫星,从太空将一对相互“纠缠”的量子“分发”到青海德令哈和云南丽江两个地面站,通过数千对量子的实验检验,发现在两个相距超过1200公里的实验站之间,量子的“纠缠效应”仍然有效。
  
  中国科学家用严格的科学实证,回答了爱因斯坦的“百年之问”。
    
  2003年开始,潘建伟团队就开始实验长距离量子纠缠。从13公里到100公里,他的团队一步一步走来,始终处于国际引领位置。最终通过太空中的“墨子号”卫星,把科学家一直假想的实验变成了现实。
  
  实验须“上天”,为现代物理提供全新探索技术
  
  数百年前,伽利略架设起人类历史上第一台天文望远镜,从此开启了天文学的新时代。“墨子号”实验成果也提供了一种全新探索手段,将为物理学的未来打开一扇门。
  
  我们身处的时空是连续的吗?爱因斯坦、波尔等科学巨擘为我们描述的宇宙哪一个更加真实?“从前没有技术能力来做这样的检验。”中科大微尺度物质科学国家实验室研究员彭承志说,比如,让光子走过很远的距离,如果空间是不平滑的,就会产生振动。通过测量光子的偏振,反过来可以验证哪个物理学的理论模型更准确。
  
  不过,这种观测的能量和尺度,不是地面实验室条件可以完成的。在理论物理学界,陆续有学者提出,可以通过天文学上的观测来检验这些物理原理,让现代科学大厦的基座更加坚实。
  
  潘建伟说,“墨子号”的最新实验成果,为开展外太空广义相对论、量子引力等物理学基本原理的实验检验奠定了可靠的技术基础。
 
  除了科学基础研究的重要作用之外,实验结果也有实际应用价值。
  
  “可以通过远距离量子纠缠来分发量子秘钥,进而构建量子网络。”潘建伟说,把1个光子送到北京,1个光子送到合肥,二者距离1000多公里,这样就可以在北京、合肥之间建立很好的量子通道,进行量子保密通信。
  
  “墨子号”星地传送距离约1200公里,也不算很远,为什么不在地面上做实验?潘建伟解释,因为光子通过地面光纤传输时,损耗很大,光纤会“吃掉”部分信号。普通信号削弱了可以放大,但量子纠缠的信号无法放大。
  
  “量子纠缠如果用光纤传送,把目前能想象到的、全世界最好的光纤都集中起来,架设1200公里,测算结果是大概3万年才能传送1个光子。”潘建伟说,通过卫星从外层空间传送光子,损耗能减至万亿分之一,目前1秒钟就能传送1个光子,很快可以累积足够的实验数据。
  
  迎接“第二次量子革命”,中国挺进最前沿
  
  “墨子号”最新实验成果16日在《科学》上发表时,这家国际权威学术期刊的几位审稿人断言,“毫无疑问将在学术界和广大的社会公众中产生非常巨大的影响”。
  
  美国波士顿大学量子技术专家谢尔吉延科评价,这是一个英雄史诗般的实验,中国研究人员的技巧、坚持和对科学的奉献应该得到最高的赞美与承认。
  
  加拿大滑铁卢大学量子技术专家延内魏因说,国际上确实存在量子科研竞赛。这个中国团队已克服了好几个重大技术与科学挑战,清楚地表明了他们在量子通信领域处于世界领先地位。
   
  据了解,类似的实验,欧盟、加拿大、日本都有科学家在呼吁和推进,或因技术积累不够,或因资金支持不够,目前进展缓慢。
  
  “这是我目前为止做过的最好的科学成果。”潘建伟说。他把量子研究的突飞猛进归功于中国“集中力量办大事”的优势:中科院上海技术物理研究所、微小卫星创新研究院、光电技术研究所、国家天文台、紫金山天文台、国家空间科学中心……“墨子号”卫星的每一个部件都凝聚了各个科研机构的心血。
  
  以量子卫星的最新实验成果为代表,中国正在挺进量子研究的最前沿。今年5月,潘建伟团队研发的世界上第一台超越早期经典计算机的光量子计算机问世。未来不久,将构建起全球首个天地一体化的实用性广域量子通信网络。
  
  去年年末,英国政府发布的《量子时代的技术机遇》报告中统计,中国在量子科技的论文发表上排在全球第一、专利应用排名第二。在“第二次量子革命”的起步阶段,中国异军突起进入“领跑阵营”。
据新华社
 
  山西晚报2017年6月17日整版
  http://epaper.sxrb.com/shtml/sxwb/20170617/584346.shtml

相关文章