您当前的位置:首页 > 通知公告 > 学术报告

Electron-phonon Interaction Using All-electron Numeric Atom-centered Orbitals

来源:
报告题目   Electron-phonon Interaction Using All-electron Numeric Atom-centered Orbitals
报告人   
报告人单位   
报告时间   
报告地点   
主办单位   
报告介绍
Abstract:
Electron-phonon (e-ph) interactions play an important role in condensed matter, since they inu-ence the properties and lifetimes of both the electron and the phonon quasi-particles. In addition,tuning e-ph offers great promise for material design at the nanoscale [1]. Although _rst-principlesstudy of e-ph has been made for simple, prototypical materials over the last decade [2,3,4,5], ap-plying these methods for large and complex systems is challenging.
In this talk, we will present the diverse strategies that we have pursued in recent years to over-come these limitations. First, we will present our real-space implementation of density-functionalperturbation theory (DFPT) in the all-electron, numeric atomic orbitals based code FHI-aims [6],which enables us to study large and complex systems due to the computational efficiency of local-ized basis sets. Second, we will discuss how we systematically studied the e-ph in real material,such as ZnO, TiO2 and 82 binary materials in both the rocksalt (RS) and the zincblende (ZB)structure. We have extended the existing _nite-difference schemes such as phonopy [7] to inves-tigate the small/large polaron by using the hybrid functional [8]. Eventually, we will criticallyreview the individual advantages and limitations of these techniques, discuss ongoing developmentefforts, and showcase possible future applications.
[1] A. Benyamini, A. Hamo, S. Viola Kusminskiy, F. von Oppen, S. Ilani, Nat. Phys. 10, 151 (2014)
[2] F. Giustino, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 105, 265501 (2010).
[3] E. Cannuccia and A. Marini, Phys. Rev. Lett. 107, 255501 (2011).
[4] G. Antonius, S. Ponc_e, P. Boulanger, M. C^ot_e, and X. Gonze, Phys. Rev. Lett. 112, 215501 (2014).
[5] P. Rinke, A. Schleife, E. Kioupakis, A. Janotti, C. Rodl, F. Bechstedt, M. Scheffler, and C. G. Van de Walle, Phys. Rev. Lett. 108, 126404 (2012).
[6] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, Comput. Phys. Commun. 180, 2175 (2009).
[7] A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).
[8] H. Sezen, H. Shang, F. Bebensee, C. Yang, M. Buchholz, A. Nefedov, S. Heissler, C. Carbogno, M. Scheffler, P. Rinke, and C. Woll, Nat. Commun. 6, 6901 (2015).
 
报告人简介:
  商红慧,博士,德国马克斯普朗克学会弗里茨·哈伯研究所理论系博士后。2006年在中国科学技术大学近代物理系获理学学士学位,之后作为直博生被保送到中科大合肥微尺度物质科学国家实验室,并于2011年在中国科学技术大学获理学博士学位,2012年至2018年在德国马克斯普朗克学会弗里茨·哈伯研究所理论系从事博士后研究,致力于凝聚态物理中密度泛函微扰理论的方法发展及程序实现,提出并实现了实空间下密度泛函微扰理论的一系列算法。精通FORTRAN语言(代码量10万行以上),具备十年以上大型科学计算软件的开发经验,具有丰富的MPI并行程序开发及优化经验,是大型科学软件SIESTA和FHI-aims的开发成员,同时还参与了欧洲NOMAD(Novel Materials Discovery)材料大数据项目的建设和维护。在Comp. Phys. Comm,International Reviews in Physical Chemistry,Nat. Commun. 等杂志上发表论文9篇,受邀在国际学术会议上做邀请报告5次。

相关文章