您当前的位置:首页 > 通知公告 > 学术报告

Quantum Engineered Interband Cascade Structures for Optoelectronic Devices

来源:
报告题目   Quantum Engineered Interband Cascade Structures for Optoelectronic Devices
报告人   Prof. Rui Q. Yang
报告人单位   University of Oklahoma,USA
报告时间   2014-07-15
报告地点   合肥微尺度物质科学国家实验室九楼会议室
主办单位   合肥微尺度物质科学国家实验室
报告介绍
Abstract:
  Interband cascade (IC) structures were originally introduced for achieving efficient mid-infrared (IR) lasers [1]. By taking advantage of the broken band-gap alignment in type-II InAs/Ga(In)Sb quantum wells to form interband cascade stages, IC lasers reuse injected electrons for photon generation with high quantum efficiency. Unlike intraband quantum cascade lasers, IC lasers use interband (conduction to valence bands) transitions for photon emission without involving fast phonon scattering, making it possible to significantly lower the threshold current density. Significant progress has been achieved in the development of high-performance IC lasers [2-3]. Some outstanding performance features such as low threshold current densities (e.g. <2 A/cm2 at 80 K, <200 A/cm2 at 300 K) and low power consumption (e.g. <0.1 W in cw operation at room temperature) partially verified the advantages of IC lasers. Also, efficient IC lasers have been demonstrated in the long wavelength IR region (>10 ?m) based on plasmon waveguides. Recently, quantum engineered IC structures have been explored for other optoelectronic devices such as infrared photodetectors and photovoltaic cells with certain advantages [4-6]. The unique features and status of these IC structures and relevant optoelectronic devices will be reviewed and discussed with recent experimental results.
1. R. Q. Yang, at 7th Inter. Conf. on Superlattices, Microstructures and Microdevices, Banff, Canada, August, 1994; Superlattices and Microstructures 17, 77 (1995); ¡°Novel concepts and structures for infrared lasers¡±, chapter 2 in Long Wavelength Infrared Emitters Based on Quantum Wells and Superlattices, M. Helm, editor, Gordon and Breach, Singapore, 2000.
2. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, ¡°Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption¡±, Nature Communications, 2, 585 (2011).
3. R. Q. Yang, et al. ¡°Recent progress in development of InAs-based Interband Cascade Lasers¡± Proc. SPIE, 8640, 86400Q (2013); and references therein.
4. R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, ¡°Interband cascade infrared photodetectors with superlattice absorbers¡±, J. Appl. Phys. 107, No. 5, 054514 (2010).
5. H. Lotfi, R. T. Hinkey, L. Li, R. Q. Yang, J. F. Klem, M. B. Johnson, ¡°Narrow-Bandgap photovoltaic devices operating at room temperature and above with high open-circuit voltage¡±, Appl. Phys. Lett, 102, 211103 (2013).
6. R. T. Hinkey and R. Q. Yang, ¡°Theory of Multiple-Stage Interband Photovoltaic Devices and Ultimate Performance Limit Comparison of Multiple-Stage and Single-Stage Interband Infrared Detectors¡±, J. Appl. Phys. 114, 104506 (2013).

相关文章