您当前的位置:首页 > 通知公告 > 学术报告

Broken Symmetry and Magnetic Skyrmions

来源:
报告题目   Broken Symmetry and Magnetic Skyrmions
报告人   黄孙祥 博士
报告人单位   University of Miami
报告时间   2014-05-28
报告地点   合肥微尺度物质科学国家实验室九楼会议室
主办单位   合肥微尺度物质科学国家实验室
报告介绍
报告摘要:
  Broken symmetry is a fundamental concept in physics. The broken symmetries at phase transitions, such as those at the gaseous/solid and the paramagnetic/ferromagnetic transitions, are familiar examples. In cubic B20 magnets, however, it is the inversion symmetry and the 4-fold rotation symmetry that are broken. The broken inversion symmetry leads to the Dzyaloshinskii-Moriya (D-M) interaction, which dictates not an aligned ground state but a spin helix, and in addition, an exotic magnetic skyrmion state with a new type of topological spin texture. Magnetic skyrmions, with a double-twist spin structure on the nanometer scale, carry a topological charge and a Berry phase in real space. Magnetic skyrmions not only provide a novel route to study the topological nature of magnetic defects but also exhibit spectacular static and dynamic properties. Among the various unusual properties, I’ll describe our experimental results of the direct consequence of the broken rotation symmetry in the electric transport properties, and the determination of the intrinsic resistance of the spin helix. In bulk B20 crystals, the skyrmion state exists only in a very small region in the phase space of a few K and a narrow magnetic field range, which is not amenable to exploration of magnetic skyrmions for new spintronic phenomena let alone devices. I will describe the realization of epitaxial B20 FeGe thin films with greatly expanded skyrmion state in phase space covering the entire temperature range up to the Curie temperature and in a much larger field range.

相关文章