站内搜索 :  加入收藏   设为首页   联系我们   English Version  

图片专题
最新热点
实验室动态
科技简讯
学术报告
公告通知

Atomic-scale control of ferroelectricity and transport in ultrathin transition-metal-oxide heterostructures

来源:合肥微尺度物质科学国家实验室    浏览次数:0


报告题目   Atomic-scale control of ferroelectricity and transport in ultrathin transition-metal-oxide heterostructures
报告人   Dr. WANG Lingfei
报告人单位   Seoul National University
报告时间   2017-10-10   15:00
报告地点   合肥微尺度物质科学国家实验室九楼会议室(9004)
主办单位   合肥微尺度物质科学国家实验室
报告介绍
Abstract:
During the last two decades, due to the rapid advancements in heteroepitaxial growth techniques, it has become feasible to reduce the oxide film thickness to nanometer scale while retaining the original ferroic order. These advances enable oxide-based electronic devices with superior functionalities. In such ultrathin epitaxial systems, the interface/surface structure becomes crucial in determining and controlling the functionalities in atomic scale.
In this presentation, we first demonstrated a selective control of interfacial termination sequence in SrRuO3/BaTiO3/SrRuO3 (SRO/BTO/SRO) heterostructures. Depending on the termination sequence at SRO/BTO interface, the ferroelectric stability of BTO ultrathin film changes significantly. Secondly, taking ultrathin BaTiO3 films as a model system, we found an intrinsic tunneling conductance enhancement near the terrace edges. Combining the advanced scanning probe microscopy and first-principles calculations, we demonstrate that the terrace edge geometry can trigger an intrinsic electronic reconstruction. The resultant free carriers reduce the effective tunneling barrier width locally and facilitate the tunneling conduction. At last, we investigated the magnetotransport properties of ultrathin SrRuO3 (SRO) films with BaTiO3 (BTO) ferroelectric capping layers. By reducing the SRO film thickness below 5 unit-cells, we observed not only the anomalous Hall effect but also a pronounced topological Hall effect. The topological Hall signal indicates that magnetic skyrmions could be stabilized in this oxide heterostructure. The scanning transmission electron microscopy results show that the ferroelectric atomic displacement in BTO layers can penetrate into SRO films by approximately 3 unit-cells. The associated inversion-symmetry-breaking can enhance the Dzyaloshinski-Moriya interaction and consequently trigger the magnetic skyrmion states.

[收藏] [打印] [关闭] [返回顶部]